over-fitting相关论文
神经网络算法是一种非常经典的分类算法,然而神经网络的一个不足之处就是容易陷入过拟合。针对这种不足,正则化神经网路算法(RNM)......
针对传统的AdaBoost算法中,存在的噪声样本造成的过拟合问题,提出了一种基于噪声检测的AdaBoost改进算法,本文称为NAdaBoost(nois-dete......
通过学习训练数据集来构造分类树的策略可能无法达到最好的泛化性能。随机噪声和某些决策仅基于少量训练数据的情况都会导致决策树......
<正> 1 决策树数据挖掘技术中的决策树技术是首先从机器学习领域得来的,它与关联规则技术作为数据挖掘技术的两个大方向,在许多领......
粗糙one-class支持向量机(ROC-SVM)在粗糙集理论基础上通过构建粗糙上超平面和下超平面来处理过拟合问题,但是在寻找最优分类超平面的......
针对连续域卷积操作跟踪算法中存在的计算复杂问题和过拟合问题,提出一种降维卷积因式分解方法和一个紧凑衍生模型。本文选取连续......
由于BP网络简单的拓扑结构和优秀的逼近能力,它已经被广泛地应用于预测和非线性系统的建模中。但是由于算法自身的不足,在实际应用......
代价敏感学习算法的目的是最小化各种代价总和,与其他学习算法一样,它必须面对过度拟合这个挑战性问题,即分类器可以较好地拟合训练数......
神经网络算法是一种非常经典的分类算法,然而神经网络的一个不足之处就是容易陷入过拟合。针对这种不足,正则化神经网路算法与提前......
本文在理论上分析比较了基于粗糙集理论的剪枝方法和C4.5中的EBP剪枝方法,并通过在多个数据集上进行实验比较,证实了基于粗糙集理......
对BP网络的拓扑结构及其结构的确定进行分析.对如何提高网络的泛化能力和网络模型的合理化进行研究,给出一些具体方法和建议。结合以......